Lecture 21
 15.2 Double and iterated integrals over general regions
 15.3 Area

Jeremiah Southwick

March 25, 2019

Last class

$$
\begin{gathered}
R: g_{1}(x) \leq y \leq g_{2}(x) \\
a \leq x \leq b
\end{gathered}
$$

$$
c \leq y \leq d
$$

Fubini's Theorem (for a general region)

Theorem

If a region R is given by the inequalities
$R: g_{1}(x) \leq y \leq g_{2}(x), \quad a \leq x \leq b$, then the signed volume below $f(x, y)$ and above R is given by

$$
\iint_{R} f(x, y) d A=\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x, y) d y d x
$$

and conversely if R is given by the inequalities
$R: h_{1}(y) \leq x \leq h_{2}(y), \quad c \leq y \leq d$ then the signed volume below $f(x, y)$ and above R is given by

$$
\iint_{R} f(x, y) d A=\int_{y=c}^{y=d} \int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x, y) d x d y
$$

Example

Example

Let R be the region bounded by the curve $x=y^{2}, y=1$, and $x=0$. Find the integral of $f(x, y)=3 y^{3} e^{x y}$ over R.

Example

Example

Let R be the region bounded by the curve $x=y^{2}, y=1$, and $x=0$. Find the integral of $f(x, y)=3 y^{3} e^{x y}$ over R.
We can describe R with the bounds $0 \leq x \leq y^{2}, \quad 0 \leq y \leq 1$, or with the bounds $\sqrt{x} \leq y \leq 1, \quad 0 \leq x \leq 1$.

Example

Example

Let R be the region bounded by the curve $x=y^{2}, y=1$, and $x=0$. Find the integral of $f(x, y)=3 y^{3} e^{x y}$ over R.
We can describe R with the bounds $0 \leq x \leq y^{2}, \quad 0 \leq y \leq 1$, or with the bounds $\sqrt{x} \leq y \leq 1, \quad 0 \leq x \leq 1$.
Which integral will be easier to calculate?

Example

Example

Let R be the region bounded by the curve $x=y^{2}, y=1$, and $x=0$. Find the integral of $f(x, y)=3 y^{3} e^{x y}$ over R.
We can describe R with the bounds $0 \leq x \leq y^{2}, \quad 0 \leq y \leq 1$, or with the bounds $\sqrt{x} \leq y \leq 1, \quad 0 \leq x \leq 1$.
Which integral will be easier to calculate?
We put the x-bounds on the inside and integrate.

$$
\begin{gathered}
\left.\int_{y=0}^{y=1} \int_{x=0}^{x=y^{2}} 3 y^{3} e^{x y} d x d y=\int_{y=0}^{y=1} \frac{3 y^{3} e^{x y}}{y}\right]_{x=0}^{x=y^{2}} d y \\
\left.=\int_{y=0}^{y=1} 3 y^{2} e^{y^{3}}-3 y^{2} d y=e^{y^{3}}-y^{3}\right]_{y=0}^{y=1}=e-1-(1-0)=e-2
\end{gathered}
$$

Example

Example

Evaluate the following integral:

$$
\int_{x=0}^{x=\pi} \int_{y=x}^{y=\pi} \frac{\sin (y)}{y} d y d x
$$

Example

Example

Evaluate the following integral:

$$
\int_{x=0}^{x=\pi} \int_{y=x}^{y=\pi} \frac{\sin (y)}{y} d y d x
$$

The integral on the inside doesn't have an antiderivative that can be expressed in terms of elementary functions.

Example

Example

Evaluate the following integral:

$$
\int_{x=0}^{x=\pi} \int_{y=x}^{y=\pi} \frac{\sin (y)}{y} d y d x
$$

The integral on the inside doesn't have an antiderivative that can be expressed in terms of elementary functions. So use Fubini's Theorem!

Example

Example

Evaluate the following integral:

$$
\int_{x=0}^{x=\pi} \int_{y=x}^{y=\pi} \frac{\sin (y)}{y} d y d x
$$

The integral on the inside doesn't have an antiderivative that can be expressed in terms of elementary functions. So use Fubini's Theorem!

$$
\begin{aligned}
& \int_{x=0}^{x=\pi} \int_{y=x}^{y=\pi} \frac{\sin (y)}{y} d y d x=\int_{y=0}^{y=\pi} \int_{x=0}^{x=y} \frac{\sin (y)}{y} d x d y \\
&\left.=\int_{y=0}^{y=\pi} \sin (y) d y=\cos (y)\right]_{y=0}^{y=\pi}=1+1=2
\end{aligned}
$$

15.3 Area

Definition
The area of a closed, bounded region R is

$$
A=\iint_{R} d A
$$

(i.e., an integral over R with $f(x, y)=1$ on the inside).

Area example

Example

Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant.

Area example

Example

Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant.
The area is

$$
\begin{gathered}
\int_{x=0}^{x=1} \int_{y=x^{2}}^{y=x}(1) d y d x=\int_{x=0}^{x=1}\left(x-x^{2}\right) d x= \\
\left.\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=1 / 2-1 / 3=1 / 6
\end{gathered}
$$

